
 Deliverable D6: Software architecture requirements

 1 / 57

PALAS – Powerline as an Alternative Local AccesS
IST-1999-11379

Deliverable D6: Software architecture requirements

Authors: Kamphuis, René (ECN),
 Warmer, Cor (ECN)

 Deliverable D6: Software architecture requirements

 2 / 57

Table of contents:

1 INTRODUCTION ..4

2 CONTEXT AND INTERFACES..7

2.1 Network topology characterisation ..7
2.2 Application data transfer characterisation..7
2.3 Roles of service providers ..9
2.4 Standards for device interfacing and inter-device communication9
2.4.1 Device access technology and installation ..9
2.4.1.1 IP: the Internet Protocol ..9
2.4.1.2 Jini: device drivers served by devices ..9
2.4.1.3 Universal Plug and Play (UPnP)..10
2.4.1.4 LON ..11
2.4.2 Local network technology...11
2.4.2.1 LONWorks...11
2.4.2.2 X10/EHS..11
2.4.2.3 IEEE-1394 ...11
2.4.2.4 HiperLAN-2 ...11
2.4.2.5 Bluetooth ...12
2.4.2.6 HomePNA ...12
2.4.2.7 The HomePlug association...12
2.4.2.8 SCP, the simple control protocol...12
2.4.2.9 HAVI...12
2.5 The services gateway..12
2.5.1 Existing devices..13
2.5.1.1 CoActive connector..13
2.5.1.2 i-LON..13
2.5.1.3 E-box. ...14
2.5.1.4 Enikia ...14
2.5.1.5 Cisco ..14
2.5.1.6 Aladn, emWare...14
2.5.2 The Open Services Gateway initiative (OSGi) ..15
2.6 Integration through XML/DOM...17
2.7 Utility service end ...17
2.7.1 IEC60870...19
2.7.2 UCA..19
2.8 Summary ...19
2.9 References: ...20

3 POWERLINE LAST MILE AND HOME NETWORK ARCHITECTURE23

3.1 Introduction ...23
3.2 Devices, architecture and value creation...26
3.3 The role of access nodes..26
3.4 Base Station..27
3.5 Service Provider ...27

 Deliverable D6: Software architecture requirements

 3 / 57

3.6 Gateway Keeper...27
3.7 References ..27

4 SERVICES MODELLING..29

4.1 UML Modelling..29
4.2 Distributed local Control and Monitoring Systems..30
4.2.1 Use Case: Automatic Meter Reading ...30
4.2.2 Expansion to Monitoring and Control..34
4.2.3 UML Object Diagram...35
4.3 Point to Point Applications ..36
4.3.1 Use Case: Telecommunication..36
4.3.2 UML Object Diagram...39
4.4 Information Exchange Applications ...40
4.4.1 Use Case: The Internet Service...40
4.4.2 Expansion..43
4.4.3 UML Object Diagram...43
4.5 Entertainment/Multimedia Applications ..44
4.5.1 Use case: Video On Demand...44
4.5.2 UML Object Diagram...47
4.6 Automation / Control Network ..48
4.6.1 Use Case: Comfort Management ..48
4.7 References ..51

5 ARCHITECTURAL IMPLEMENTATION ISSUES..52

5.1 Partitioning of functionality..52
5.2 Required management and configuration facilities.......................................52
5.2.1 Object persistence ...52
5.2.2 Replication mechanisms, serialisation and versioning.................................53
5.2.3 Multi-agent architectures...53
5.2.4 Control timing implementation and synchronisation.....................................54
5.3 Conclusions and solutions ..54
5.4 References: ...56

6 USED ABBREVIATIONS...57

 Deliverable D6: Software architecture requirements

 4 / 57

1 Introduction

In other deliverables of the PALAS-project business models, the current market
developments and technological aspects of data transmission through the
powerline are dealt with in detail. Eventually, all these aspects are reflected in
functional requirements for software systems. In the design phase of the
development of these software systems, as a first step, processes and business
rules, behaviour and control aspects and data structures are modelled in an
abstract, implementation independent way. From this view with three aspects, a
fourth view is developed: the architectural view. In the architectural view, hardware
and software components and their interfaces are identified. The components and
objects identified in this process are mapped onto existing, standardised hard- and
software components. The application then consists of a number of processes
using these components glued together to the application logic.

In this document, the software architecture is discussed in terms of attributes of
components and the interfaces between components. The software architecture is
the bridge between the PLC business models and processes, the hardware
components and the communication channels between the hardware components.
Currently, in architectural terms, the emphasis is shifting from PC-centred
computing to appliance-centred computing with software being the middleware
gluing applications together. This implicates, that on small-scale networks, PLC
has a natural role in empowering and interconnecting devices-

In traditional software development methods, as a first step in building a system, a
specification, abstracted from the implementation, only looking at functionality of
an application is made. In the PALAS project, a number of technological
developments and existing business models form essential boundary conditions
and prerequisites for the architectural work. Therefore, in this document a middle-
out approach is followed: a top-down approach from the functionality point-of-view
is combined with a bottom-up approach from the technical aspects of PALAS. In
this way, it is tried to identify differences in PLT-based networks and variants with
other transmission media in order to indicate most suitable applications using
power line transmission on the last mile and to define a proper role to
developments in high and low bandwidth application spectrum.

In the architectural discussion a differentiation in a number of application types for
PLT is made. Furthermore, a number of service delivery frameworks are
discriminated. From the point-of-view of software technology, designing
applications for telemetry and telecontrol pose no insurmountable problems.
However, the track record of mass-introduction of successful applications is small.
The distributed nature of these applications in terms of security, guaranteed (non)
accessibility, safety and (un) interruptability pose software architectural problems.
Furthermore, merely designing and implementing one application on a dedicated
infrastructure will prove not to be very cost-efficient. There is a large number of
stakeholders for in-house and SOHO applications in residential areas. Service
bundles of applications with comparable architectures and infrastructures are more
likely to be implemented. To deliver properly aggregated service bundles alliances
of application providers have to be formed. In this document the factors will be
identified, that affect the introduction of service applications and the optimal

 Deliverable D6: Software architecture requirements

 5 / 57

aggregation in terms of bandwidth and processor requirements by a service
bundle provider.

A larger probability for successful introduction of large scale distributed
applications comes from hardware and network innovations and from software
standardisation, developments now rapidly progressing. In chapter 2 the focus is
on the role of these developments on the software architecture as they form the
context of applications in terms of devices, nodes and networks each with their
respective interfaces. With respect to the software architecture, software
standards elements relevant for PLT-application-types will be discussed briefly.
The operating environment, as reflected in standards for distributed system
operation, is also discussed in chapter 2. These pertain to JINI on the micro-
network level, COM, CORBA, Java-RMI for inter-application interfaces, XML/DOM
for interfacing to a distributed database and WWW-wide inter-application
communication) and ongoing industry co-ordination activities such as the OSGi
(Open Systems Gateway initiative) will also be discussed in the chapter 2.
Furthermore, the software architecture requirements definition will be strongly
influenced by the information systems context for PLC-based services. This
context includes software already in use at the utility side. In this respect one
might think of customer information and relation management systems, billing,
distribution automation systems, electricity load balancing apparatus and so on.
Future, renewable energy generation systems will be of a small scale. Distributed
operation for optimal utility DA/DSM then will pose a large problem, if information
flows across small-scale networks is not possible. Proper matching of scale and
application scope of processes and optimal utilisation of information content is an
essential prerequisite. A short description of the latter aspects concludes chapter
2.

On a more detailed level, last-mile service applications, from a software
architectural point of view, require setting up a hierarchical architecture with a
number of distribution levels where processes intercommunicate. Software
systems on the service provider level have to be interfaced to software systems on
ever-smaller scale systems, when the hierarchical tree is descended. This is
discussed in Chapter 3.

Technically speaking, partitioning and dimensioning of components along the
hierarchical tree has implications for object serialisation, persistence and
replication. Obviously, no generic architectural framework for all applications can
be derived. The way to define the abstract system architecture in this document is
by following the industry standard UML (Unified Modelling Language) method,
elaborating use cases and associated object models and business rules (object
constraints) for a number of archetypal key application-types. These types cover
clearly distinguishable categories of applications. This is the subject of chapter 4.

Assignment of tasks to a suitable hierarchical network level plays an important and
discriminating role in possible service development schemes. E.g. adequate
partitioning of tasks between a low-intelligence meter at-home and a medium
voltage contractor serving a large number of households can play a key role in
cost-effective implementation. Also manageability and versioning of the software
and hardware modules in fine-grained networks are discussed and further features
the mapping of these architectural considerations onto bundling of service types.

 Deliverable D6: Software architecture requirements

 6 / 57

These subjects are treated in chapter 5. Finally a number of conclusions are
stated.

 Deliverable D6: Software architecture requirements

 7 / 57

2 Context and Interfaces

In this section a description of software architecture relevant attributes for PLT-
applications is given and standardised software component attributes forming the
context of the technological development of distributed applications are discussed.
The scope is taken one segment broader than purely the last mile connection to
gain a better insight in the development of applications, that not only have
requirements with respect to the last-mile but also to dwellings and buildings as
well as to utility company software systems.

2.1 Network topology characterisation
A number of functional entities in networks are relevant to PLT-applications.
1. The local network. At this moment, small-scale networks are rapidly emerging

[1]. The local network enables local data-exchange between intelligent
appliances or computers.

2. The local access node. This node is the portal (i.e a transfer-point) for
exchange of selected information between the local network and the outside
world. Possible local access nodes are a two-way communication, third
generation (intelligent) set-top box, a PC+modem or a dedicated residential
gateway.

3. The concentrator node. The concentrator node typically is placed in a
transformer station in an urban district. The transformer station enables
communication to the fourth level of communication between local access
nodes.

4. The utility node. This node is the top-level in the network hierarchy in the scope
of the discussion.

With respect to the physical data transfer medium a large number of combinations
exist between powerline, RF, cable, fibre optic or a copper telephone line to
interconnect individual entities.

2.2 Application data transfer characterisation
From the network topology above a number of application types can be
discriminated from the point of view of data transfer frequencies and data rates
and from control behaviour. In the discussion, a further discriminating point is the
extent to which information has to pass all levels in the network topology. Shortly
mentioned in the discussion are home automation networks. These sometimes
contain devices consisting of networks themselves. These point-to-point
communications are concentrated in piconets [2] or micronets, which, in their own,
are part of larger networks integrated and accessible as one component. Bluetooth
in this respect may be considered as a piconet replacing a USB-cable connection.
Piconets together form a functional component/appliance. The distributed
applications may be characterised as follows:

1. Distributely managed, local control and monitoring systems (DCMS). In the

network topology these have their control processes and data distributed over
the network. Required bandwidth for both directions is low. Real-time
constraints are moderate. Software reliability, management and maintenance
requirements however are heavy. Applications, standards and tools to produce

 Deliverable D6: Software architecture requirements

 8 / 57

the applications may be compared to those for large industrial real-time DCSs.
Typical required transfer rates are in the order of kB/s. Control network
applications place the service delivering companies in the control-loop of
critical user processes. In terms of the software architecture this means, that
careful consideration has to be given to data and object persistence as
function of time, replication mechanisms in case components in the network
fail and serialisation mechanisms. This kind of application is most difficult to
build, test and manage. Furthermore these applications are very costly,
because the expenditure on a per programming statement base for control
code is several times larger than for database handling code or output
handling code.

2. Point to point applications (P2P). Although the signals may be sent across the
powerline in a broadcast manner, one might imagine the result is a one-to-one
connection. These traverse the network topology to a certain level in both
directions. One might think of an in-building telephone call, a call within an
urban district or a wider area normal telephone call. These types of
applications are heavily real-time. Bandwidth requirements in both directions
are moderate. Application logic is contained in dedicated small DSP-
processors and large telephone exchange systems. Transfer rates are in the
order of tens of kB/s. At the moment it is expected, that circuit-switched
telephony is going to be replaced by packet-switched telephony. Touring then
will become a matter of intelligent IP-socket communication and real-time data
transfer.

3. Information exchange applications (IP). These applications are based on the
IP-protocol used on the Internet. Data packages are interchanged with low to
moderate real-time constraints as information content. Which network
components are traversed in the above scheme is arbitrary. Low-bandwidth
suffices upstream from the local network; moderate bandwidth is required for
the opposite direction from the “content” repository. For distributing data-
streams in information networks, the required volume is higher, but the
reliability requirements are much lower. Performance also is dependent on
connections outside the network topology. Functional requirements and
manageability of IP-applications dictate a mechanism with an emphasis to
server or client-side computing. Examples of the first are active server pages
(ASPs) and servlets and of the second, applets. Bandwidth requirements for
the first category are lower than for the second. The opposite is true for the
processor-capability. Distributed systems based on remote-procedure call
mechanisms have known difficulties with firewall-protection when programmed
in Java.

4. Entertainment/multimedia applications (EMA). These applications require a
large bandwidth to the local access node. Large volumes of information are
transferred in parallel down the network hierarchy. Upstream volumes are
typically very low. Entertainment networks are most demanding in terms of
data transfer; the distribution of data however is a minor point because signals
are analogously multiplexed.

Given functional requirements hybrid applications may be imagined. For instance,
for a pay-TV application e.g. via PLT, ordering and accounting can be done using
a low-speed reliable connection, e.g. via PLT, and signal transmission by high
bandwidth optical fibre.

 Deliverable D6: Software architecture requirements

 9 / 57

2.3 Roles of service providers
There are a number of actors engaged in the delivery of services [3] and in the
operation of software systems. Deployment of services needs service developers,
service brokers, partnering with a service aggregator, an internet service provider,
a connection provider and/or a device vendor, and subscribers. The platform and
local infrastructure provider, who delivers the hardware infrastructure and basic
communication software for the local access node defines IP-address mapping
from in-home devices to the gateway. A service/application provider delivers the
application functionality. In the business software market, it is expected, that the
proportion of applications, that are run centralised by dedicated service providers
will increase significantly. The communications service provider (service enabler),
that operates communications access for an ASP (application service provider).
The role of utilities in this respect may vary. Consumer research [[3]] shows that
utility companies are the preferred providers for bringing packaged services into
the homes.

2.4 Standards for device interfacing and inter-device
communication

In order to combine all these kinds of networks, transparent interfaces are to be
defined to establish the common data-structures and procedures. Genericity of the
interfaces is the key to interoperability of these different apparatus, applications
and networks. Devices have to be connected to other nodes in the network as
seamless as possible. A large number of standards for these interfaces and for
small-scale network traffic have been defined by the industry.

2.4.1 Device access technology and installation

2.4.1.1 IP: the Internet Protocol
Recent miniaturisation efforts from the industry make it possible to have an IP-
stack [1] on very limited hardware. In this way the large amount of money
invested in Internet communications software is used effectively. Very thin-client
applications are promoted in this way, leaving the main responsibility for operation
to a connected server. The software to control an IP-node in such a way is
connected to attribute-syntax within an HTML context.

2.4.1.2 Jini: device drivers served by devices
Jini is developed to enable spontaneous, dynamic networking for all kinds of
devices [[4]]. Jini is a specification launched by Sun Microsystems. Adoption of Jini
by device manufacturers relieves the task of configuring and installing devices in
heterogeneous networks. Furthermore, the management and maintenance of
complex networks is facilitated, if devices are installed according to this
specification. Devices, in the Jini-philosophy, are responsible for dispatching their
device driver code and device management parameters to applications instead of
having device driver code installed and managed as part of network management.
Through this mechanism, the task of building, maintaining and changing a network
of users, software and devices is simplified. Devices can be plugged into any
network and make their services available to any other device as well as are
becoming aware of any services other devices on the network can provide.

 Deliverable D6: Software architecture requirements

 10 / 57

From an architectural point of view, Jini devices, once they are installed, can be
instantiated and managed as objects, to and from which messages can be
received. The Jini infrastructure (the Jini federation) consists of
• Look-up service: the database for services available in the federation.
• Discovery protocol: allows discovery of any resource plugged into the

federation and registers it's services using the look-up service.
• RMI 1.2 (a method or function call across a network): Remote Method

Invocation is a part of the Java Virtual Machine and makes it possible to make
use of methods located at a remote machine.

• Distributed security system: a security framework in which an ACL (Access
Control List) describes which components are allowed to get access to other
components.

Jini can be implemented in as little as 48 kB of base infrastructure code for the
virtual Java machine and it's class libraries. Jini is tightly coupled to developments
of the Java programming language. From JDK 1.2.2 on, it is supported by the Java
development environment. Java does not yet meet the high expectations on
delivering transparent inter-process communication primitives for distributed
communications.

Although the specification is licensed to over 20.000 customers, examples of use
of the Jini specification are coming up slowly. One of the early adopters is
Echelon, which is the owner of LON-technology. Hard disk suppliers such as
Quantum incorporate Jini into its hard disks, so that each disk drive can make
itself available to all computers on a local network. Madura will launch an ERP
package based on the Jini concept as a service over the Internet rather than being
sold to customers. Highest pay-off would yield the application of JINI dynamically
driving a printer in a PC-network, but presently no examples exist.

2.4.1.3 Universal Plug and Play (UPnP)
As for Jini, UPnP [11] is a standard, defined to make installing devices as general
as possible. This mechanism is more classical, as all data and control processes
are part of the device driving application. The standard is a follow-up and micro-
networked self-exploring extension of the common device driver concept. A device
consists of a number of configuration parameters and of a number of specific
functions, which are called by applications in a generic scheme. Management and
maintenance of device driving code is major focus point for the software
architecture. Mechanisms as defined for JINI as an auto-discovery protocol are
implemented in the standard.
Universal Plug and Play (UPnP) is an architecture for pervasive peer-to-peer
network connectivity of PCs of all form factors (physical card dimensions),
intelligent appliances, and wireless devices. It is a distributed, open networking
architecture that leverages TCP/IP and the Web to enable seamless proximity
networking in addition to control and data transfer among networked devices in the
home, office, and everywhere in between. In UpnP device control protocols are
developed now for a large number of devices. These device control protocols are
the counterparts of the discovery protocol of Jini.

 Deliverable D6: Software architecture requirements

 11 / 57

2.4.1.4 LON
Devices having LON-node hardware have a dedicated, proprietary processor
handling I/O on one hand and network traffic on the other. LON-devices can form
a dynamically configurable network. All LON-devices operate in an advanced
peer-to-peer configuration and communication schedule. In the LONMark
association a number of companies are governing standard network variable types
and node objects.

2.4.2 Local network technology
Currently a large number of technological developments take place and standards
are developed to interconnect devices on a small scale. The developments are
spread from very low (kB/s) to very high bandwidth (400 MB/s). Especially the
development of SOHO’s (small offices, home offices) adds to a large increase in
small local networks.

2.4.2.1 LONWorks
LONWorks [5] is a network technology built especially for small-scale networks. In
most commercial building management systems today, this technology is
common. LON abstracts the logical network from the physical network by a
communication bus architecture and processors in such a network, which can be
addressed from a central place. Connectivity of apparatus and control logic in a
LON-network can be programmed and configured dynamically. Main drive for LON
was the vast reduction in cabling necessary for experimental installations. LON
technology is independent of the physical medium for data transfer. Frequently in-
building power line communication is used. In some residential gateways, LON-
technology is used extensively.

2.4.2.2 X10/EHS

X10 is the standard for low bandwidth, home automation communication. As a
physical transport medium for signals the powerline is possible. EHS is the result
of a number of projects conducted by the European Home Systems Association
[[6]]. In architectural terms, X10 and EHS can be seen as bus-structures allowing
the individual addressing of network components and appliances. EHS-networks
can interface to an EHS-modem central in the network to communicate to
peripheral networks.

2.4.2.3 IEEE-1394
For high band-width applications a bus architecture, IEEE 1394/Ilink, has been
developed to facilitate high-bandwidth interconnectivity of entertainment and home
theatre applications. The 400 Mb/s databus twisted pair and low-connection cost
enables high volume data-transfers if broadband has passed the access node. At
lower bandwidth the Apple advocated FireWire standard connects devices without
wires. The IEEE 802.11 (Ethernet) standard has been extended to bring network
technology to the homes and has a wireless version.

2.4.2.4 HiperLAN-2
These standards utilise the 4.0 GHz-band to wirelessly interconnect high-speed
data-transfer devices in a computer network setting.

 Deliverable D6: Software architecture requirements

 12 / 57

2.4.2.5 Bluetooth
Bluetooth is a recent development lead by Ericsson [2]. The standard uses
wireless technology in 2.4 GHz-band to realise 750 kB/s point-to-point
connections. In the topology instantaneous piconets are set-up with one master
and up to 8 slaves within a reach of 10 meters. Problems for in-home use of
Bluetooth enabled devices may come from microwave oven radiation, which may
emit in the same frequency band.
From an architectural point of view, piconets present a one-point addressable
subsystem in an application. As such, they can be modelled as separate entities in
the system. Prime target of Bluetooth is to replace the USB-bus cabling of PC’s to
peripheral apparatus with wireless communication.

2.4.2.6 HomePNA
The Home phoneline network alliance uses existing copperwire to connect the
local access node to the individual devices. The ADSL and XSDL standards,
currently available, support high data-transfer rates; up to real-time video.

2.4.2.7 The HomePlug association
In this association research activities are set-up and co-ordinated to make the in-
house powerline suitable for high-bandwidth applications. Data transfer speeds
obtained are in the order of 2 Mbit/s; just below the limit for digital video.

2.4.2.8 SCP, the simple control protocol
Microsoft advocates this protocol. Simple Control Protocol (SCP) is a lightweight,
royalty-free networking technology optimised for devices with very limited memory
and processing power and for networks with low bandwidth, such as power-line
carrier (PLC) networks. Devices that stand to benefit from SCP include lights,
home security devices, home automation devices, and other small appliances that
are not capable of supporting TCP/IP networking or that connect to the home
network through a low speed powerline carrier medium (PLC).
Microsoft, General Electric and other industry leaders are combining their home
control networking technology focus to converge existing home control initiatives
into SCP, thus enabling a global standard for lightweight home control networking.
Originating from Microsoft SCP is tightly coupled to uPnP. The first implementation
of SCP will be embedded in an inexpensive power-line-networking chip next year.
Domosys, ITRAN Communications Ltd., and Mitsubishi Electric Corp. are all
actively developing SCP-enabled PLC chips which manufacturers can use in the
development of smart appliances and home control products.

2.4.2.9 HAVI
For inter-device communication for audio and video devices a software standard
describing the interface, message format and the protocol for audio and video
devices has been defined by industry leaders in the multimedia branch. The
standard is geared towards high-bandwidth transmissions.

2.5 The services gateway
The services gateway is the central point by which part of the local network is
controlled and served. The services gateway may be a residential gateway but this
does not necessarily have to be so. Essentially, a modem+telephone is a primitive
from of a service gateway. The services gateway is attached to a wide services

 Deliverable D6: Software architecture requirements

 13 / 57

network to connect service providers to internal clients. RG’s terminate all
networks and enable multiple home targeted services. RG’s are to be
discriminated on the complexity dimension of applications and on the number of
networks interconnected. RG’s may be only enabling one service specific service
and one specific network. At the other extreme a whole-house gateway terminates
all external networks and enables all services.

2.5.1 Existing devices.
The residential gateway forms the entrance point from the last-mile to the buildings
or homes. From a software architectural point of view the residential gateway has
a definitive role in synchronising and controlling applications implemented by
several service providers. The physical implementation of the residential gateway
has a number of forms. For metering applications one might imagine an intelligent
meter. For streaming multimedia at the moment a third generation set-topbox with
two-way communication possibilities can be imagined. More universal residential
gateway concepts are under development now. Devices consist of a central
processor, an amount of memory and access channels to several networks. In that
sense they mimic a conventional computer. The processors mostly have an
embedded real-time operating system. Operating systems range from very
dedicated and functionality tailored ROM-able ones up to general purpose Linux
with real time extensions. Programming the devices can be done by uploading
cross-compiler generated code, a purpose designed command language or
through access through an IP-stack.

2.5.1.1 CoActive connector
 For control applications, CoActive systems has a gateway on the market in which
the system has an Internet-address and software to communicate to the inside
and outside world using the IP-protocol. The IP-messages are transmitted through
10BaseT Ethernet or modem. Internally the connection is established through an
EIA-709 connection via LONWorks. The IOConnect Architecture in the Coactive
connector avoids the server bottleneck at the centre of other architectures. Instead
of requiring that all control data be gathered into a single server, and then
forwarded across this server's network connection in a fixed way, the IOConnect
Architecture allows you to connect multiple control subsystems to the IP network in
a distributed fashion according to logical and physical requirements. The
subsystem connection is accomplished using a compact embedded connectivity
device, rather than a PC. The IOConnect Architecture makes the IP infrastructure
available to all electronic devices. There are applications for automated meter
reading using Sensel. The latter company uses CoActive systems to do meter
reading and offering feedback using the Internet. In a field trial on the Isle of
Gotland in Sweden, the Vattenfall spin-off, Sensel, positions itself as an
infrastructure provider using the Co-Active systems technology. Several thousands
of households are currently equipped with intelligent residential gateways to allow
application service providers to install applications.

2.5.1.2 i-LON
LONWorks markets the I-LON technology. In an I-LON box a bridge between a
LON- and an IP-network is established. In this way, systems may be remotely
controlled from every place having an Internet connection. I-LON devices are
managed through a dedicated operating system interface with a number of DOS-
like commands with 1 Mbyte flashdisk as a background storage. I-LON devices

 Deliverable D6: Software architecture requirements

 14 / 57

are addressable in a HTML-environment using a networkvariable type. With a
special tag in the HTML syntax input and output attributes of devices may be set.
Using the tag, the mapping of networkvariables to displayable fields in forms is
made. Using forms these may be linked to fields in forms, that are transmitted
using the get-form attribute. The I-LON box has a WEBserver, that mediates the
IP-traffic and makes the conversion to LON-network topology. Appropriate
mapping schemes exist between logical and physical network components and to
build hierarchical data and network structures and security mechanisms. Using
NAT (Network Adress Translation) the individual in-home IP-addresses may be
translated to one central address for communication with the provider. The
mapping scheme adheres to the LONMark conventions for configuring types of
devices. In this way the WWW can be safely connected to small local LON or IP
peer-to-peer networks. LON-networks are not addressable across firewalls. CGI-
like processing takes care of sending the whole content of a form from one place
to the other. Network variables may be exchanged on a get and on a by polling
base. Using this I-LON technology in Italy 27 million homes are equipped with an
intelligent meter by ENEL in the coming year. Services implemented include
meter-reading and load management applications. In Italy especially exceeding a
threshold value leads to more expensive tariffs. In the future more value-added
services are foreseen.
More advanced control logic for applications may be obtained by Java applet or
servlet programming. The latter will be the method of choice for large centralised
control applications. Currently however the iLON-box does not support the Java
because the JVM is not supported.

2.5.1.3 E-box.
Ericsson targets its strategy not only on home networks but also on home
applications. Essentially, the added value is the extension of the context of their
wireless devices to a central interconnectivity box in the home. As a part of this, an
E-box was developed as a solution for a residential gateway. From a software
architectural point of view, the accessibility and interfaces of this kind of apparatus
are most important. The E-box software is based on a multi-processing
environment in the Unix operating system. An E-box can be connected to a
WEBPad, which allows a portable in-home screen for establishing an Internet
connection.

2.5.1.4 Enikia
In the Enikia [8] perspective in-home powerline communication is combined with
last-mile access to transparently enable Internet access directly to the
device/appliance level. Via pervasive computing an information appliance network
based on the Internet a platform to exploit services is set-up.

2.5.1.5 Cisco
Cisco Internet Home Gateway 2000 series is a family of residential gateway
devices that enable multi-services delivery to the home over high-speed, always-
on broadband connections using DSL-technology. The product family features
easy home networking and self-configuration technology. The product family is
open to service providers.

2.5.1.6 Aladn, emWare
These gateway-types are typically home automation centred control servers with
outside connections and proprietary operating system architectures. For

 Deliverable D6: Software architecture requirements

 15 / 57

communication standard low-speed protocols are used and the primary application
is in home control systems.

2.5.2 The Open Services Gateway initiative (OSGi)

This initiative has been started by a number of companies including IBM. The
Initiative is now gaining broad support from the industry. OSGi is creating open
specifications for the delivery of multiple services over wide-area networks to local
networks and devices.

In the Services Gateway, OSGi [9] is the platform for communication based
service applications. The SG can enable, consolidate and manage voice, data,
Internet and multimedia communications to and from the home or office. It also
functions as a service enabler for a range of high value services such as energy
management, home automation and security, device control and maintenance,
etc. The scope of services includes
• Communication Services: point to point communication for customer, inter-PC

networks and appliances.
• Energy Services: Automated Meter Reading, load management and comfort

management.
• Home Automation Services: more flexibility, bundling with other residential

services.
• Security Services: id.
• Remote Home Healthcare Services: special services for elderly and disabled

people.

Aim is to integrate parts of the OSGi software specification in products and
applications and map these to set-top boxes, cable modems, routers, residential
gateways, alarm systems, energy management systems, consumer electronics,
PCs, and so on.

As a software specification, OSGi is platform and communication medium
independent. It supports multiple local network technologies whether wired or
wireless. It also supports multiple device access technologies such as UPnP and
Jini. OSGi is strongly supporting Java as an implementation platform. At the
moment a completely documented Java object model is available.

From an architectural point of view, OSGi has an embedded server, attached to
the wide-area network, that connects external service providers to internal clients.
OSGi includes APIs for service life cycle management, internal service
dependency management, data management, device access and management,
client access, resource management and security. In May 2000 release 1 of the
OSGi-specification has been issued. Objects in OSGi are described and
implemented in the Java programming language. Thereby OSGi anticipates on
expected developments in the Java arena like JavaOS’s for appliances,
embedded Java, personal Java and Jini. On the other hand, HTML, XML and
other Internet-related technologies are supported. The transmission medium for
program code and data for services is the Java .jar archive format. In the OSGi
model the service provider provides access to services by downloading software
on the gateway as a .jar-file, the deployment item in Java. In the OSGi-
specification a service aggregator can also be discriminated, that provides a set of

 Deliverable D6: Software architecture requirements

 16 / 57

bundled - compatible - services. Furthermore a role is attributed to a gateway
operator, that manages and maintains service gateways and its services. In many
cases the gateway operator will also be the gateway owner, retailer, installer
and/or hardware maintainer. A provider comparable to an “Internet Service
Provider” provides the necessary communications over a wide-area network.

Entities in an OSGi scope are:

• Service management. OSGi defines API’s for creating and running services in

a multiprocessor, heterogeneous network. A multiple provider environment is
also defined.

• Device-access management.
• Logging of events.

Follow-on activities within OSGi include HTTP Services, Client Access Device
interaction schemes, configuration data utilities and persistent data services linking
to large database systems and legacy software through transparent interfaces.
The service framework provides a convenient context for developers to design
applications. Services may be contained in bundles. OSGi provides primitives for
live-insertion of services into aggregates called service bundles, life-cycle support
of services and containment of devices in device bundles. In the following
architectural discussion OSGi is one of the key mapping mechanisms

With respect to the device access specification, OSGi is a software layer
complementary to Jini, in the sense that it can use the Jini infrastructure to define
the device interfaces. OSGi has primitives for automatic detection of attached and
detached devices. A mechanism has been designed for device driver search in a
network. Devices can be configured dynamically and may be plugged in an
executing set of applications. Furthermore, the object interaction vehicle is the
Java language. The packaging concepts and expressiveness of this language are
also used to define the detailed specification [[9]]. Native programming code, code
not executable by a virtual machine, is encapsulated into JNI, the Java Native
Interface. The way native programming code, different from Java-code, is
integrated and deployed in the different components of the environment is defined
in the standard.

In abstraction level, the OSGi specification resembles the CORBA and DCOM-
standards for object interaction in distributed networks. A casting to the operational
environment with distributed intelligence and data in heterogeneous size and
processing power processors and different speed networks is made.
The key entities in the Framework are:
• Services - Classes that perform certain functionality written the interface and

the implementation separated. Service providers have to write software to
implement the interface functions. Essential for the design and implementation
of the service functions are their live-update, reliability and stability attributes.
Services have a well-defined level of operation as reflected in various states of
service-processes.

• Bundles - The functional and deployment unit for shipping services. A bundle
consists of a number of programs deployed as a Java-archive, .jar, file.
Bundles may interact with each other through marshalling via a registration and
publishing mechanism similar to common operating systems environments.

 Deliverable D6: Software architecture requirements

 17 / 57

• Bundle contexts - The execution environments of the bundles in the
Framework. The bundle context governs the execution of bundles and services
in a heterogeneous system environment.

OSGi gives a number of concepts to discuss service gateway applications in a
common way, be it from the hardware or from the software point of view. The
further developments within the OSGi consortium are of utmost importance to
companies developing hardware and software for applications. In the further
discussion connection is sought.

2.6 Integration through XML/DOM
Several software vendors are strongly advocating XML at the moment to tackle
problems with distributed data management. In the Microsoft .NET-architecture
[12] the standard plays an important role for application development. All various
components are integrated to the XML meta-language. XML features data
management aspects for very large-scale applications, XML has self-describing
mechanisms for device access. Inter-application mapping using XML is facilitated
through the Document Object Model standard. In this standard, distributed objects
are made understandable in a transparent way across a network.
SOAP (Simple Object Access Protocol) is a lightweight communication protocol
designed to let COM or CORBA objects communicate. SOAP is a lightweight
protocol for exchange of information in a decentralised, distributed environment. It
is an XML based protocol that consists of three parts: an envelope that defines a
framework for describing what is in a message and how to process it, a set of
encoding rules for expressing instances of application-defined data-types, and a
convention for representing remote procedure calls and responses. SOAP can
potentially be used in combination with a variety of other protocols (COM,
CORBA). With the SOAP protocol methods can be invoked through the Internet.
SOAP codifies the existing practice of using XML and HTTP as a method
invocation mechanism. The SOAP specification mandates a small number of
HTTP headers that facilitate firewall/proxy filtering. The SOAP specification also
mandates an XML vocabulary that is used for representing method parameters
and signature, return values, and exceptions. SOAP has been submitted to the
W3C for the formation of a working group.

2.7 Utility service end
Utilities are trying to discriminate themselves by getting into the E-commerce
business. For instance, in the USA, Kansas City Power and Light [13] gives
customers the possibility to access customised information. ENRON, together with
IBM and America-On-Line recently established the New Power Company [14] to
deliver services partly as described above to residential and small customers.

For accounting, billing and customer relationship management, systems operate
batch-wise using standard third or fourth generation business software. These
systems are loosely coupled to systems governing the primary process, delivery of
electricity, gas or water, which operate in a real-time environment. Small local
intelligent systems near electricity producers or consumers operating in concert
with above two types increase the complexity of interaction.

With energy saving and renewable generation in mind the near-future trend is from
large, centralised power generation units with a easy production forecast to small,

 Deliverable D6: Software architecture requirements

 18 / 57

distributed generation units, the production of which is more difficult to predict. An
“energy-farm” may be thought of as to consist of a cluster of mini- and micro-CHP
(Combined Heat Power) units, solar energy and wind-turbines. These “energy-
farms” do not utilise a large distribution infrastructure but can pose net-balancing
problems on several time-scales (from milliseconds to hours). Management of
these small individual energy generating and optimally using components requires
the design of advanced distributed information systems and new algorithms for
distribution automation.

Components in such next generation systems perform:
• Data-acquisition van essential parameters with several sampling intervals.
• Storage of operational parameters in a distributed database. In the database

the history, the long and short-term use of data, is an important attribute.

With the advent of small scale, distributed computing, the following new service
applications are possible for utility systems:
• (A)DSM. Advanced, fine-grained, demand side management specific to energy

farms.
• AMR. Automated meter reading and trending on a small scale. Aggregation of

production figures and determination of forecasts to optimise performance.
Small sizes of production units require solid procedures for accountable
registration.

• Tampering and outage detection. Algorithms can be implemented on small
processor hardware to detect temporal anomalies in consumption patterns.
This may give valuable information about the misuse or defects of the
distribution network.

• Monitoring of the quality of power (harmonics, dips, spikes, probability of
failure) delivered. Depending on the use of power, a customer may require
different qualities.

• Predictive maintenance. Viewing the behaviour of selected, sampled
parameters on different time-scales may allow the detection of upcoming
defects in equipment before these defects cause damage.

• (A)DA. Advanced Distribution Automation. Systems now are under human
supervised real time control via SCADA-software. The future network topology
will change yielding several clusters of individually optimised production
islands. Given a set of distributed computers in a suitable network topology,
distribution resource planning with real-time pricing constraints can become a
reality.

The topology of the distribution and demand side management gives utilities a
competitive advantage to set up value added services. For exerting these services
a connection to local home/building automation networks is necessary. Utilities in
this way may be in the position to build up a more extensive customer relation as
energy knowledge experts. Derived information of metering and seasonal trends
may lead to advise for improving efficiency. Especially if the readings of electricity,
gas and heat delivered are analysed, efficient partitioning between these carriers
may improve overall efficiency. Preventive monitoring techniques used in the
distribution process may also be delivered to customers. For larger customers, in
real-time tariff situations, an increase in information is an essential prerequisite for
contract management, strategy implementation and cost-effective prediction of
future trends in generation and consumption.

 Deliverable D6: Software architecture requirements

 19 / 57

For large customers in a liberalised market, next day tariffs are to be given on a
quarter of an hour basis from the demand and the supply side. This stresses the
need for increasing metering and control intelligence.

For tele-metering and tele-control a number of standards are or are being defined
by the IEC. Some notable examples are discussed below.

2.7.1 IEC60870
The IEC 60870 standard describes a protocol for remote metering and control
applications. It incorporates an object model and the interfaces between
communicating parties on both sides of the powerline. The communication
mechanism defined in the standard, however, has a poor performance. Especially
setting up a large number of connections takes a lot of time.

2.7.2 UCA
 The Utility Communication Architecture (UCA) is an ensemble of open protocols
and standards that helps eliminate the extra costs, redundancy and inconvenience
associated with using system-specific, or proprietary, communications interfaces
each time new equipment is connected to automation systems. UCA makes use of
a selection of international data communication standards for the complete range
of electric utility needs. It facilitates distribution automation and has interfaces to
Supervisory Control and Data Acquisition (SCADA). In the standard an attempt is
made to seamlessly connect all of their key facilities, from the control centre to the
customer’s meter, along the electronic communications highway. UCA is based
upon open standards. UCA offers interconnectivity between equipment from
different manufacturers and interoperability between the databases used to
exchange high-speed, real-time data in utility operations. In other words, it allows
utilities to “plug and play” equipment from different vendors over the same data
network.

2.8 Summary
In essence the following scheme illustrates the standardisation efforts of the
application types, that are further discussed in this chapter:

 Deliverable D6: Software architecture requirements

 20 / 57

Type Local network Local access
node

Concentrator/
router node

Utility node

DCMS LON, X10,
EHS,
HomePNA,
HomePlug,
SCP,
IEC60870

OSGi, DCOM,
CORBA, RMI

 IEC80870,
XML/DOM,
UCA

PP DECT, Blue
Tooth

Home PNA

Internet IP, HTTP IP IP IP,
XML/DOM,
SOAP

EMA HAVI,
IEEE1394,
HiperLAN2,
IEEE802.11

OSGi

Table 1 Hardware and software standards

Essentially, at the moment the number of technical hardware and software
standards is sufficient to build powerful applications. With the OSGi-standard a
first conceptual standard is becoming accessible. There have to be more of these
conceptual standards and implementations of existing standards like COM and
CORBA to facilitate large scale layered application development. Furthermore,
standardisation further on the hierarchy, especially on the concentrator node is
essentially lacking. This concentrator node would have a discrete advantage for
PLT-applications in allowing RG’s to be relatively cheap, “thin” clients served by a
“thick” concentrator node server. This not being the case, the concentrator node
only has a transparent routing and data transfer function with emphasis in
application logic on the utility node and RG processing power.

2.9 References:

[1] D. Estrin, R. Govindan, J Heidemann, “Embedding the Internet”,

Communications of the ACM, May 2000.
[2] Bluetooth specification can be found on www.bluetooth.com.
[3] Proceedings the second Home Networks European congress. 23-24 May

London, 2000. Especially the articles of Parks Associates contained therein.
[4] www.jini.org. The central place for obtaining the specification.
[5] LON is extensively described at www.echelon.com.
[6] EHS can be reached at www.ehs.org. EHS-devices are the results of a

number of EU-projects conducted in the ESPRIT-framework.
[7] Sensel is a firm installing residential gateway technology from Co-Active

systems. The role of Sensel is providing the infrastructure. References are
www.coactive.com and www.sensel.com.

[8] Enikia is a firm recently established for operating services through
gateways. On www.enikia.com detailed information can be found.

[9] The Open Service Gateway initiative is described on www.osgi.org.

 Deliverable D6: Software architecture requirements

 21 / 57

[10] SOAP (http://www.w3.org/TR/SOAP) gives a description of the proposed
standard

[11] UPNP2000. www.unpn.org The main source of information Universal plug-
and-play forum.

[12] Various authors. Microsoft Developer Network Journal. September 2000.
Microsoft Press.

[13] This service can be found at http://www.kcpl.com.
[14] The company presents itself at http:/www.newpower.com.

 Deliverable D6: Software architecture requirements

 22 / 57

 Deliverable D6: Software architecture requirements

 23 / 57

3 Powerline Last Mile and Home Network architecture

3.1 Introduction

As we saw earlier, the powerline service infrastructure consists of at least four
levels,: the devices at the end-nodes, a local access node through which the home
is coupled to the outside world, a concentrator or base station, which connects the
powerline to the communication backbone, and the utility node, which delivers the
services from the utility or service provider.

A number of requirements can be summed up for smart devices in a last-mile<>
home network. A device should have a unique id to allow addressing in large
hierarchical networks. A physical and logical mapping mechanism should exist to
enable proper context definition. Furthermore a device should be reasonably
priced and standards used in the device hard- and software architecture should
not be proprietary and have the support of many vendors; it should be self-
configuring, live-insertable in the network and have self-diagnostic features and
have non-volatile memory. In this way, smart devices can be seen as appliances
performing services on a small scale: a smart device has responsibility for a
special task. Other components in the network can call upon the device to perform
this task.

Traditionally, the local access node to networks is dedicated to one application. At
this moment, in-home networking and automation is emerging at the market, in
which the access node is implemented using a residential gateway [1]. This
gateway provides local intelligence, is able to connect different Internet access
networks to multiple types of in-home networks and can deliver different e-services
over one single connection. Although this gateway can serve as an 'all-purpose'
access node we will have to take into account that a home will have more than
one local access node.

The base station, also called in literature the concentrator, for PLT-applications is
normally located at the transformer substation. A main task for the base station will
be to act as a multiplexer for requests from the top end of the network and as an
intermediate for information transfer from the lower part of the network. The way
the multiplexer station is embedded in the power distribution network, determines
the functionality of powerline value-added services. In the USA, a very limited
number of households are connected to one base station. In Europe, the situation
differs per country, but the number of connections generally is very much larger.
This poses a definite advantage for local applications with residential area scope.

From the software architecture point of view, the OSGi separates utility node in
two roles, the service provider role and the gateway keeper role. The first party is
responsible for the content of the services, the second party is responsible for the
way these services are set up and rolled out in the network.

We therefore enhance the four levels mentioned above to five levels, as outlined in
figure 3.2, and which will be elaborated further in the following paragraphs:
• devices,

 Deliverable D6: Software architecture requirements

 24 / 57

• local access node,
• base station,
• service provider,
• gateway keeper.

These infrastructure levels must communicate using standardised interfacing such
as described in chapter 2. Powerline services then can be deployed on the above
infrastructure in such a way that decisions can be taken at a logical level, thus
relieving the rest of the network. The main responsibility of a software architecture
is to deploy tasks at the right level and to assure that information needed to fulfil
these tasks is communicated to this level. The infrastructure structure requirement,
as stated above, complies with the OSGi model. In some applications two or more
levels will coincide with one network node.

In the context, mentioned above, the following elements have to be considered for
our model:
1. The user or customer. Application types have been discussed in Chapter 2. It

should become clear at which level the user can operate on the network. The
user interfaces should be simple yet adequate. Both browsers and touch
screens can deliver this functionality.

2. The legacy systems at the level of the service provider and/or the gateway
keeper. For obvious reasons the powerline service systems should be linked
with BackOffice systems in areas as finance or accounting, customer
relationship management, marketing and sales, etc. These systems can be
loosely coupled.

The user should not be aware of the underlying technical details and network
infrastructure. All objects and components should be real world and be
transparent.

 Deliverable D6: Software architecture requirements

 25 / 57

Service Provider

Base Station

Local Access
Node

Accounting

Customer
Relationship

Customer
Device

Customer

Gateway Keeper

Infrastructure
Powerline Service

feedback
any communications line

communication
 backbone

low voltage
local access powerline

low-voltage
in-house powerline

communication
 backbone

interconnection

Figure 3.1 Infrastructure Powerline Services

 Deliverable D6: Software architecture requirements

 26 / 57

3.2 Devices, architecture and value creation
Devices are the basic elements in the information structure, as they either provide
information to be handled in the service or they receive information, which will be
handled internally by the device.

Enikia [2] differentiates three types of devices:
1. An appliance creates value primarily through its physical processing features.

Therefore, the embedded intelligence features will likely focus on device
control and feedback data relating to the device’s mechanical functions such as
power consumption, maintenance status, or performance data. Examples are a
commodity meter, which provides usage statistics, and a washing machine,
which washes clothes.

2. The fundamental value of computers is using embedded intelligence to
process digital content.

3. In between lie electronic devices that rely on both embedded intelligence and
mechanical functions to add value (for example, CD players or printers).

Appliances, electronics, and computers will all have embedded intelligence and
communications abilities. These can be seen as the service(s) of a device, which
are available for other nodes in the network. Note that the term 'service' in this
context is not quite the same as the 'service' in PALAS terms. On request a device
can deliver information, or it can perform a task.

3.3 The role of access nodes
The access node is a first level of aggregation, which acts as a buffer between in-
house information and applications and the outside world. This access node might
provides local intelligence, might be able to connect different Internet access
networks to multiple types of in-home networks and might deliver different e-
services over one single connection. Note that a home may be supplied with more
than one access node, each used for different applications. One can regard even
a modem as an access node. Its only intelligence is to transfer data from a
computer to the telecommunication network and vice versa. An intelligent access
node, such as the residential gateway, can be used as a layer where control is
based at a low point in the network. If we can deploy decisions to be taken at this
level, we might prevent extensive data traffic to and from the base station and the
service provider. Also the service provider will not be extensibly busy for individual
customers, but can concentrate on integrating tasks.

An important discriminating point for applications utilising the intelligence
contained in access nodes is the extent to which control actions may be performed
autonomously. As an example consider an entrance security application. Many
home automation applications can be working autonomously at the gateway. This
also holds for energy management in the house based on e.g. fixed pricing and /
or availability of local energy supply and energy buffers.

 Deliverable D6: Software architecture requirements

 27 / 57

3.4 Base Station
Powerline is especially equipped to serve as a medium for communication in-
house and at the last mile. The concentrator serves at the buffer between the
powerline last mile services and the (telecommunications) backbone, thus opening
up the Internet-based services for the in-house applications. Communication
between the concentrator and the gateway will be provided using the powerline.
Communication between the concentrator and the service provider may use any
communications infrastructure, such as ADSL, cable, wireless, etc.

Example: direct telecommunications applications can use the concentrator level to
set up direct connection to another party without involving a central host of the
service provider. Connection information can be gathered real time either at the
gateway level or at the concentrator level.

3.5 Service Provider
The service provider is responsible for the content of the service. Each provider
will also be interested it in the usage of its services. Therefore this information has
to be collected at the service host and stored for later handling. Typically,
processes at this level are accounting and billing and customer relationship
management.

3.6 Gateway Keeper
The gateway keeper is primarily concerned with operation and maintenance of the
hardware infrastructure and basic communication software. For powerline
applications it is assumed that the utility serves as the gateway keeper. Note that
the gateway keeper can also act as a service provider. However, conceptually we
keep these two tasks separated.
All operational, management and maintenance issues around services and
gateway configuration will be dealt with by the utility.

3.7 References
[1] Coactive Networks - The business case for residential gateway deployments -

delivering a new world of Internet services. Coactive Networks Brochure, 2000
- http://www.coactive.com/media/busmodbro.pdf.

[2] Enikia - The Information Economy Derivative Markets Model: A Technology
Value Chain for the Digital Economy -
http://www.enikia.com/download/iedmm.pdf.

 Deliverable D6: Software architecture requirements

 28 / 57

 Deliverable D6: Software architecture requirements

 29 / 57

4 Services Modelling

4.1 UML Modelling
In chapter 2 we have differentiated between the following application types for
powerline services, each with its own characteristics and standards:
• DCMS: Distributed local Control and Monitoring Systems
• P2P: Point to Point applications
• IP: Information exchange applications
• EMA: Entertainment and Multimedia Applications

In this chapter we will describe some typical service examples for these
application types and elaborate these into object diagrams according to the Unified
Modelling Language (UML) standard. UML is an industry standard for developing
object models and is described thoroughly in Rumbaugh [1], Jacobson [2] and
Booch [3].

UML starts with describing a system by so called use cases, in which, in clear
language, examples of operational parts of the system are worked out.
The next task is to identify the object classes in the model from the description of
these use cases. A class can be described by its attributes and operations.
Attributes are properties of each class object, e.g. the name of a person.
Operations are the responsibilities of the class objects. It will be clear that the
meter is responsible for supplying some kind of usage figures.

Typical classes, which will be identified, are:
• Information carriers, such as: Meter, Electric Appliance, ...
• Information handlers, such as: Registry, Billing or Accounting, ...
• User interface devices: Screen, Audio, Telephone, ...
• Involved Parties: Customer, Utility, Service Provider, ...
• Topology: relations between involved parties.

In the UML object model the basic data and functions of a system are determined.
In a detailed UML design also the complete behavioural model is determined. In
this document we will only discuss this aspect for a number of typical applications
as far as it reveals the main characteristics of these applications.

Since PLC services will be working in a distributed environment special attention
has to be paid to the deployment of the responsibilities (operations) on the network
topology. Deployment can be described as the configuration of all nodes in a
system and the distribution of all components, objects and operations on these
nodes. In chapter 4 we have already indicated a likely network configuration for
powerline services. From here we can deploy the object model on this network.
References for deployment are Orfali [4] and CORBA (see Ben-Natan [5]). The
latter is a standard for object oriented component system interfacing and is closely
related to the standards described in chapter 2.

 Deliverable D6: Software architecture requirements

 30 / 57

4.2 Distributed local Control and Monitoring Systems
In the DCMS network the control processes and data are distributed over the
network. The system is interested in a service delivered by any of these nodes in
the network. Examples of this type of application are automatic meter reading and
monitoring of appliances. In this paragraph we will elaborate on the first example.
The communication network uses infrastructure such as BlueTooth, USB, PLC on
a narrow bandwidth up to 100 kBps.

4.2.1 Use Case: Automatic Meter Reading
Automatic Meter Reading (AMR) can be described as the remote collection of
consumption data from customers' utility meters. AMR provides electric, gas and
water utilities with the opportunity to streamline metering, billing, and collection
activities and to enhance service to customers and gain a competitive advantage
(AMRA definition). AMR also provides detection of tampering and/or energy theft.

Step 1: Description of the use case

The metering service can be described as follows:

Each customer has one or more meters which provide information on the
usage of any commodity (electricity, gas, and water). These usage data have
to be registered such that they reflect the price fluctuations over time of the
commodity. Pricing can be based on fixed prices for fixed time intervals (e.g.
day vs. night tariff) or it can be market dependent, in which case prices can
fluctuate every hour or so. The information needed in automatic meter
reading is the amount of usage in every price period.
At certain intervals the registered usage data will be read out by the relevant
utility company. The read information is stored for later reference.
At certain periods in time the utility company sends out a bill to the customer,
who pays either electronically or by normal bank transfer. The bill is based on
the commodity usage and the prevailing prices at the time of use.
The customer can review his usage pattern by visualisation of the usage
history. Also the cost of usage can be visualised on the basis of prevailing
prices.
The utility can analyse the data on tampering and/or energy theft. How this is
done is not subject of study in this case.
Another part of the AMR service is maintenance, including adding and
deleting new meters, etc. Standards such as Jini, UPnP and OSGi can be
used to automate this task.

Step 2: Identifying objects and attributes

From the description we can derive the following objects in AMR:

−Meter A meter measures usage, e.g. of a commodity. A

meter usually is a kind of counting device.
−Utility The commodity provider.
−Customer Has an agreement with the utility on delivery of one or

more commodities.

 Deliverable D6: Software architecture requirements

 31 / 57

−Commodity Electricity, gas and water are mentioned as
commodities, which can be metered. A commodity is
characterised by a certain amount of usage over a
time period.

−Tariff The cost per unit associated with the commodity; tariff
is time-dependent.

−Clock Recognition of intervals and periods requires data to
be read on a regular time-base. A clock will provide us
with timing.

−Usage data Usage data consist of periodic readouts of the meter
counter. The readout period depends on the tariff
changes of the commodity. Each change in tariff
determines a new readout period.

−Accounting System Metering information is used for billing. Therefore we
need an accounting system to handle this billing. In
the accounting system the billing frequency and
banking information is included.
The usage data are the input in the accounting
system. Output is an account view to be sent to the
customer.

−Information System The user should be able to view the metering
information. Therefore we need an information system
to handle this user feedback. The usage data are the
input in the information system system. Output is a
usage view, to be shown to the customer.

NB. We will not consider the preparation of the bill as a part of the service
system. This will be handled by the accounting system. However, on-line
viewing of the account can provide added value. We can enhance this to a
special service for "e-Billing".

Step 3: Identifying operations

The following operations can be identified in the above description of AMR:

−register usage Commodity usage over time has to be registered by

the meter. The residential gateway can be used as a
buffer to store these data for a longer period.

−read out meters Either the provider periodically reads meter usage
data from its customers' gateways or the gateways
send usage data to the provider host. The frequency
depends on the buffer capacity of the gateway.
In order to reduce communication traffic the
concentrator may act as an intermediate by
assembling the data from its gateways and sending
these to the provider host.

−store usage The collected usage data, including the time of usage
or the valued price, have to be stored into the
accounting system of the service provider.

 Deliverable D6: Software architecture requirements

 32 / 57

−visualise usage A customer should be able to view his or her own
usage statistics, including prices. Standard Internet
facilities can be used.

−get price The price of a commodity within a given period has to
be retrieved.

−prepare bill On the basis of usage and prices a bill has to be
prepared for a user, either on request by the user or
periodically by the service provider.

−send out bill The prepared bill has to be sent out to the customer.
This can be done electronically or traditionally by
postal service.

−pay bill The user should pay the received bill.
−detect failure The residential gateway can detect any meter

deviation and notify either the service provider or the
gateway keeper.

−analyse usage The usage patterns may be analysed in order to
detect any misbehaviour or to inform and advise the
customer or to compare usage with standard patterns,
etc.

When we think about the remote metering service operational and maintenance
tasks must not be forgotten. We must be able to add or remove customers, meters
and appliances, detect meter failure, handle operational errors, synchronise the
service system, etc. Also we must be able to set commodity price levels or cost
rises.

Step 4: deployment of tasks

A typical way of deployment of the metering service is to provide the homes
with a local access node, e.g. residential gateway. Information is then
gathered by the utility by addressing this access node for each customer
through last mile access, using the base station as an intermediate. The
access node takes care of the in-home information using the home network.

The access node and the base station are used to buffer usage data. For
visualisation of these usage data information will be gathered not only from
the service provider (where the history data are archived), but also from the
access node or the base station, since the most recent usage data will not
always be known at the service provider.

In figure 4.1 the AMR schedule and deployment of tasks is outlined.

 Deliverable D6: Software architecture requirements

 33 / 57

Service Provider

Base Station

Local Access
Node

Accounting

Customer
Relationship

usage data
10 kBps

n < 5

usage data
100 kBps
n < 200

usage data
100 kBps
n > 1000

Customer
Meter

feedback
100 kBps

Customer

Gateway Keeper

Automated Meter
Reading Service

faults
10 kBps
N > 1000

settings
10 kBps

settings
10 kBps

pay bill

register usage
detect failure

read out & store usage
prepare & send bill

analyse usage
visualize usage

visualize usage

visualize usage

Figure 4.1. Powerline Automatic Meter Reading Schedule

 Deliverable D6: Software architecture requirements

 34 / 57

4.2.2 Expansion to Monitoring and Control
Meter reading as described above is concerned with meters and usage figures,
needed for billing. We can also see meter reading as a special case of monitoring
and control, in which a device can exchange any kind of information with the
outside world and its state influenced by the system.
We then arrive at the following object generalisation:

− Device A device delivers information the user or utility is interested

in. A device has embedded intelligence. Communication
ability enables the device to share information with the
outside world. This outside world can also influence /
control the state / operation of the device.

Devices are not strictly reserved to in-home usage, but might also be placed at
outer sources (e.g. current regional climate data, Internet based market data).
Contrary to in-home devices, which are usually owned by a customer, these
devices share information among a group of customers. Therefore we introduce
the SharedDevice class:

− SharedDevice A shared device is defined as a device, which is shared by

more customers.

Devices, by their embedded intelligence, can be seen as services in the sense of
Jini / OSGi. A meter is a service, which delivers usage data on request; a device
also delivers e.g. state or value-based information and will listen to commands to
control it. Together these services can form a service bundle for monitoring and
control.

In paragraph 5.6 an example has been worked out of a comfort management
system. This example has been taken from the TRAFO project [6].

 Deliverable D6: Software architecture requirements

 35 / 57

4.2.3 UML Object Diagram

Although Automatic Meter Reading seemingly is a simple application, a lot of
stress is laid upon the communication channels and the network nodes. System
failure at any level should not lead to loss of data. Therefore metering information
objects have to be persistent by data replication at all levels in the infrastructure.
This complicates software maintenance.
Since timing is essential in AMR (especially since commodity pricing is time
dependent) synchronisation also is essential on the network.
In a control network less emphasis is laid on communication. Local intelligence is
important, and therefore more processor capacity and larger memory
requirements are required. Since control networks often need a lot of information,
the control granularity of the (local) network becomes finer.

Customer

name

Utility

prepare bill
read out meters
send out bill
store usage
synchronize

Device

address
state

SharedDevice

address
state

Commodity

type
get price

Meter

sync
get usage

BaseStation

address
multiplex

Gateway

address
detect failure
multiplex
register usage
store usage

UserView

UsageView

analyse usage
visualize usage

AccountView

pay bill
show bill

CommTariff

period

Commodity

type
get price

utility.commodity < utility.customer.gateway.meter.commodity

AccessNode

address
multiplex

Clock

time

1*
owns

1

*

provides

*1
shares

1

*

is metered by

1*

*

*

1

*

1

*

1 *
delivers

1

*
1

1

Figure 4.2. UML Object Diagram Automatic Meter Reading

 Deliverable D6: Software architecture requirements

 36 / 57

4.3 Point to Point Applications

4.3.1 Use Case: Telecommunication

Step 1: Description of the use case

The telecommunication service can be described as follows:

A customer uses a device (normally a telephone, but other devices are
possible) to set up a connection with an other communication device.
Identification of this device traditionally is done by number, but can be any
other unique addressing on the network (IP addresses). The required
connection will be set up on the network such that both sides can
communicate. In some cases further identification (e.g. username /
password) will be necessary to set up a connection or to start
communication.
Telephone connections communicate by voice data. The connection usage is
continuous during the time of communication. Payment is done on the basis
of the length of a connection and the location of both sides.
At some time the connection will be closed on request by either side.
The telecom company registers the connection and the period that the
connection stays open.
At certain periods in time the Telecom Company sends out a bill to the
customer, who pays either electronically or by normal bank transfer. The bill
is based on the number of connections the customer has set up, the length of
time of these connections and the location of both connection sides. This
information is also visualised to the customer.

Step 2: Identifying objects and attributes

From the description we can derive the following objects in
telecommunication:

−Telecom company The communication provider.
−Customer Has an agreement with the telecom company on

delivery of the communication service. Identification
information are attributes of the customer.

−Connection A connection is established between two customers.
The connection period is characterised by the starting
time and the length of the connection. Also the
location of both connection sides is important and the
communication medium.

−Telephone A telephone device delivers the means to
communicate.

−Voice data The voice data do not play a role in the
telecommunication service. The only functionality is
that they are transferred during a connection.

−Price Price can be a complex issue, depending on the type
of connection, the starting time and the location of
each connection side.

 Deliverable D6: Software architecture requirements

 37 / 57

−Accounting System Connection information is used for billing. Therefore
we need an accounting system to handle this billing. In
the accounting system the billing frequency and
banking information is included.
The connection data are the input in the accounting
system. Output is an account view to be sent to the
customer.

−Information System The user should be able to view the connection
information. Therefore we need an information system
to handle this user feedback.

Several of these objects can be seen as services in the sense of Jini / OSGi.
A telephone device is a service, which transfers information to another
telephone device. The telecom company service accepts a connection and
monitors it. Together these services can form a service bundle for
telecommunication.

NB. We will not consider the preparation of the bill as a part of the service
system. This will be handled by the accounting system. However, on-line
viewing of the account can provide added value. We can enhance this to a
special service for "e-Billing".

Step 3: Identifying operations

The following operations can be identified in the above description of
telecommunication:

−set up connection
−identification The customer must identify him/herself.
−communicate Data has to be transferred from one side to another

and vice versa.
−close connection On request the connection should be closed.
−register connection The connection data have to be stored into the

accounting system.
−visualise A customer should be able to view his or her own

connection statistics, including prices. Standard
Internet facilities can be used.

−send out bill On the basis of connection prices a bill has to be
prepared for a user.

−pay bill The user should pay the received bill.

When we think about the communication service, operational and
maintenance tasks must not be forgotten. We must be able to add or remove
customers, handle operational errors, etc. Also we must be able to set
connection price levels or cost rises.

Step 4: Deployment of tasks

Traditionally, a telephone connection is set up by establishing a direct line.
We could use the residential gateway mentioned earlier to take over this role.

 Deliverable D6: Software architecture requirements

 38 / 57

Service Provider

Base Station

Local Access
Node

Accounting

Customer
Relationship

Telephone

Customer
Caller

Utility

Telecommunications

feedback
100 kBps

voice data
10 kBps
n < 200

connection data

Base Station

Local Access
Node

Telephone

Customer
Receiver

voice data
10 kBps
n < 200

voice data
10 kBps
n = 1 - 5

voice data
10 kBps
n = 1 - 5

register connection
prepare & send bill

visualise

set up connection

set up connection

accept connection

accept connection

communication
backbone

Figure 4.3. Powerline Telecommunications Schedule

 Deliverable D6: Software architecture requirements

 39 / 57

4.3.2 UML Object Diagram

In essence telecommunication has a much simpler control structure than DCMS
applications. The service is less sensitive to failure, since a connection is only
characterised by existence or non-existence. Registration of a connection only
takes place at the central (provider) level. Therefore also timing is not essential in
telecommunication applications.

Figure 4.4. UML Object Diagram Telecommunication

Telephone

locat ion
type
close connect ion
communicate
identify
set up connect ion

Customer

name

BaseStation

address
multiplex

AccessNode

address
multiplex

Util i ty

prepare bil l
read out meters
send out bi l l
store usage
synchronize

Telecom

register connection

UserView

UsageView

analyse usage
visualize usage

AccountView

pay bi l l
show bil l

Device

address
state

1

1

Connect ion

length
start t ime cal led

cal ler

1

*

1

*

1*

1

*

1

*

 Deliverable D6: Software architecture requirements

 40 / 57

4.4 Information Exchange Applications

4.4.1 Use Case: The Internet Service

Step 1: Description of the use case

The Internet service can be described as follows:

The customer requests connection to a provider, using its address and an
identification procedure (username, password). After a verification procedure
a connection or session is opened.
A customer uses a device (normally a PC modem, but other devices are
possible to set up a connection with an Internet provider. Identification of the
provider traditionally can be done by number or any other unique addressing
on an existing network (IP addresses). Identification of the customer usually
is done by username and password. After a verification procedure the
connection is opened and the customer can communicate on the network.
Internet connections communicate by data transfer using standardised
protocols. The connection usage is characterised by periods of continual
packet transfer alternated with periods of inactivity. Payment is done on the
basis of the length of the connection and / or the total amount of data
transfer.
At some time the connection will be closed on request by either side.
The Internet provider registers the connection. It also registers the amount of
data that is transferred during the connection period. Note that, if a telephone
line is used, the telecom company registers the period that the connection
stays open (see the telecommunications use case).
At certain periods in time the Internet provider sends out a bill to the
customer, who pays either electronically or by normal bank transfer. The bill
can be based on the number of connections the customer has set up, the
length of time of these connections and the amount of data transferred. This
information is also visualised to the customer.

Step 2: Identifying objects and attributes

From the description we can derive the following objects in Internet service:

−Provider The Internet provider.
−Customer Has an agreement with the Telecom Company on

delivery of the communication service. Identification
information are attributes of the customer.

−Session A connection is established between the customer and
the provider. The session period is characterised by
the starting time and the length of the connection. And
also by the amount of data transferred during a
session.
Note that the Telecommunication service can be used
to set up a session.

−Modem A modem device delivers the means to communicate.

 Deliverable D6: Software architecture requirements

 41 / 57

−Data Data are sent in packages. The total amount of data
sent during a session should be registered by the
provider.

−Accounting System Session information is used for billing. Therefore we
need an accounting system to handle this billing. In
the accounting system the billing frequency and
banking information is included.
The session data are the input in the accounting
system. Output is an account view to be sent to the
customer.

−Information System The user should be able to view the session
information. Therefore we need an information system
to handle this user feedback.

Several of these objects can be seen as services in the sense of Jini / OSGi.
A modem device is a service which transfers information to the provider. The
provider service accepts a session and monitors it. Together these services
can form a service bundle for Internet service.

NB. We will not consider the preparation of the bill as a part of the service
system. This will be handled by the accounting system. However, on-line
viewing of the account can provide added value. We can enhance this to a
special service for "e-Billing".

Step 3: Identifying operations

The following actions can be identified in the above description of Internet
service:

−set up session
−identification The customer must identify him/herself.
−communicate Data has to be transferred from one side to another

and vice versa.
−close session On request the connection should be closed.
−register session The connection data have to be stored into the

accounting system.
−send out bill On the basis of connection prices a bill has to be

prepared for a user.
−pay bill The user should pay the received bill.

Step 4: Deployment of tasks

Traditionally the Internet provider is the gateway to the World-Wide-Web.
This is also reflected in the infrastructure diagram. As an alternative the
WWW-service or part of it can be placed on the Base Station or even the
Local Access Node, creating an Intranet. In this case more intelligence is
needed at these nodes.

 Deliverable D6: Software architecture requirements

 42 / 57

Service Provider

Base Station

Local Access
Node

Accounting

Customer
Relationship

data stream
n < 5

< 1 MBps

data stream
n < 200

< 1 MBps

data stream
n < ???

< 1 MBps

Internet
Computer

feedback
100 kBps

Customer

Utility

faults
n < 100
10 kBps

request
n < 5

10 kBps

Internet Service

accept session
register session

prepare & send bill

set up session

set up session

World Wide
Web

Intra Web

Figure 4.5. Powerline Internet Service Schedule

 Deliverable D6: Software architecture requirements

 43 / 57

4.4.2 Expansion
Note that Telecommunications, worked out in the previous paragraph as a point to
point connection, can also be performed using real-time package switching as
described in this paragraph.

4.4.3 UML Object Diagram

As telecommunications also Internet service has much simpler control structure
than DCMS applications. The service is less sensitive to failure, since a session is
mainly characterised by existence or non-existence. Registration of session
information only takes place at the central (provider) level. Therefore also timing is
not essential in Internet service. Finally WEB-applications are output/browse-
driven with no major consequences, when errors in output coding occur.

Utility

prepare bill
read out meters
send out bill
store usage
synchronize

BaseStation

address
multiplex

AccessNode

address
multiplex

Customer

name

PC/Modem

close connection
set up connection

eProvider

address
register connection
verify

Device

address
state

1*

1

*

*

*

eSession

data amount
length
start time
add amount

1 *

1

*

Figure 4.6. UML Object Diagram Internet Service

 Deliverable D6: Software architecture requirements

 44 / 57

4.5 Entertainment/Multimedia Applications

4.5.1 Use case: Video On Demand

Step 1: Description of the use case

The video on demand service can be described as follows:

A customer uses a device to request video service. The video distributor lets
the user choose one of the available videos. The customer may require a
sample clip from a video. Price information should be mentioned on time of
choice.
The customer accepts the video after which he starts the video play. In some
cases further identification (e.g. username / password) will be necessary to
receive a video.
The distributor registers the chosen video for the customer and starts the
video transfer on request. It also registers the amount of data that is
transferred during the playing period.
At some time the video will be paused during a short period on request by the
customer. The distributor registers this. At the end of the video the
connection is closed.
At certain periods in time the distributor sends out a bill to the customer, who
pays either electronically or by normal bank transfer. The bill is based on the
number of videos the customer has ordered. Monitored information on the
video service is also visualised to the customer.

Step 2: Identifying objects and attributes

From the description we can derive the following objects in VoD:

−Video distributor The video on demand provider.
−Customer Has an agreement with the video distributor on

delivery of the VoD service.
−Video The stream data that is transferred from the distributor

to the customer.
−Video Play The actual visualisation on the customer side.
−Monitored Information The list of videos the user has watched, the time

of watching, the video prices, etc.
−Price Price is normally based on the video price, which

could be time dependent (either time of day or
difference between e.g. premiere videos or older
ones).

−Accounting System Connection information is used for billing. Therefore
we need an accounting system to handle this billing.

−Information System The user should be able to view the connection
information. Therefore we need an information system
to handle this user feedback.

Several of these objects can be seen as services in the sense of Jini / OSGi.
A device is a service which transfers video images to the customer screen.

 Deliverable D6: Software architecture requirements

 45 / 57

The VoD service accepts a video connection and monitors it. Together these
services can form a service bundle for Video on Demand.

NB. We will not consider the preparation of the bill as a part of the service
system. This will be handled by the accounting system. However, added
value can be provided by on-line viewing of the account. We can enhance
this to a special service for "e-Billing".

Step 3: Identifying operations

The following actions can be identified in the above description of VoD:

−request video service
−show video list
−choose video
−identification The customer must identify him/herself.
−start video
−play video Data has to be transferred from one side to another

and vice versa.
−pause video
−close connection On request the connection should be closed.
−register The video play data have to be stored into the

accounting system.
−send out bill On the basis of video prices a bill has to be prepared

for a user.
−pay bill The user should pay the received bill.

When we think about the VoD service operational and maintenance tasks
must not be forgotten. We must be able to add or remove customers, handle
operational errors, etc. Also we must be able to set connection price levels or
cost rises.

A user authentication might be necessary before a connection is opened to
communication.

Step 4: Deployment of tasks

Traditionally telephone or Internet connection is set up by direct line. We
could use the residential gateway mentioned earlier to take over this role.

 Deliverable D6: Software architecture requirements

 46 / 57

Service Provider

Base Station

Local Access
Node

Accounting

Customer
Relationship

video stream
n < 5

> 10 MBps

video stream
n < 200

> 10 MBps

video stream
n < ???

> 10 MBps

Video Screen

feedback
100 kBps

Customer

Utility

faults
n < ???
10 kBps

video selection
n < 5

10 kBps

Video On Demand
Service

Figure 4.7. Powerline Video on Demand Schedule

 Deliverable D6: Software architecture requirements

 47 / 57

4.5.2 UML Object Diagram

Video on Demand is basically comparable with telecommunications and Internet
service. However, a significant difference exists in the control of service.
When a video is ordered, but system failure prevents the customer from seeing the
complete video, one can argue that no service is given. Therefore failure control is
an important service issue. Timing is not essential in video on demand services.

AccessNode

address
multiplex

BaseStation

address
multiplex

Customer

name

Utility

prepare bill
read out meters
send out bill
store usage
synchronize

VideoRecorder

choose video
pause video
play video
stop video

VideoProvider

register video

UserView

AccountView

pay bill
show bill

UsageView

analyse usage
visualize usage

VideoMovie

price
title

Device

address
state

1

*

VideoRental

starttime

*

*

1

*

1

*

1

*

1*

1

*

1

*

Figure 4.8. UML Object Diagram Video on Demand

 Deliverable D6: Software architecture requirements

 48 / 57

4.6 Automation / Control Network
In a control network we have different types of devices working together to perform
a defined task. The control network is based on the following procedure:
• collecting information from a number of sources,
• making any decision based on this information,
• communicate the decision to the involved devices and sources.
This procedure can have a semi-continuous character, in which the control is
continuous over time, or it can be a single decision in time, potentially followed by
some action elsewhere in the network. Also control can function as an
autonomous process or it can be triggered by an event in the network.

Part of these control systems can function locally. Added value for powerline
services is the connection to the outside world. A main issue for a good software
architecture is the distribution of the control logic in the network.

Examples of such control networks are:
• Presence detection: a sensor can be used to registrate the event. The control

system acts by e.g. switching on the lights or turning on the heat control.
Presence detection can function purely in-house. If it is extended to security, a
warning can be issued to the outside world, e.g. the security service provider.

• Performance monitoring: power quality control, outage detection, appliance
diagnostics, etc. The control system monitors the network for any special
event. On occurrence either an action can be taken or a warning can be issued
at some level in the network.
Performance monitoring can function mainly in-house. In case of an event it
can transcend to the service provider.

• Heat control: on the basis of presence in rooms, expected climate conditions
(temperature, wind, sunshine) and even expected energy price a heat control
system can continuously optimise the indoor climate in a room or building.
Comfort management can function in-house or near-house. However,
information on fluctuation of energy prices, which will be retrieved form the
outside market, enhance the value of the system since it can be used to cut
costs.

• Load management: given a number of tasks a load control system can
distribute these tasks over time such that within certain constraints peak
energy usage can be avoided.
Load management in-house does not add much value. Peak avoidance might
be a main topic for the utility if cumulative effects over a large number of
households can be taken into account.

4.6.1 Use Case: Comfort Management

Step 1: Description of the use case

The following example is taken from [6]. In this paper a complete comfort
control system has been worked out. At this level we are not concerned with
the logics of the control itself, but we will concentrate on the main tasks in the
control network.

Comfort management can be described as follows:

 Deliverable D6: Software architecture requirements

 49 / 57

A customer can define personal profile for thermal comfort and air quality in
the rooms of his/her house, based on expected presence, type of activity,
etc.
The comfort management system controls a number of devices, which can
be used to influence the indoor climate. These or other devices can also be
used to measure the different aspects of the indoor climate and the
environment, which influences the indoor climate.
Each setting of a control device during a certain period in time requires an
amount of energy, which can be obtained from local sources (e.g. solar
power, solar radiation, heat buffer) or has to be obtained from an energy
market. Energy usage from the market is coupled with a market price for
each period.
The task of the comfort management system is to provide in each room
comfort within the customer-set ranges at a minimum price from the
customer point of view. In this task information is used from expected market
prices and weather forecasts.

Step 2: Identifying objects and attributes

From the description we can derive the following objects in comfort
management:

−Customer The communication provider.
−Customer profile Time-dependent settings of required comfort by the

user, given either as a time-series of values or as a
time-series of ranges on comfort aspects.

−Indoor climate A possibly multi-dimensional vector giving the quality
of the comfort in a room. Thermal comfort and air
quality are both aspects of the indoor climate.

−Room / House We have to model the customer premise in which
each room might have different characteristics and
different possibilities for comfort control.

−Device In the above description we have two types of devices:
control devices can be instructed to perform a task;
measurement devices give information needed by the
control system.

−Period
−Energy source Different energy sources can be used to actuate

different control devices. Energy sources can have
limited capacity and time-dependent pricing.

−Market The market is the place where energy is supplied. In
many cases the utility serves as the market place for
the customer. Also the power exchange might serve
as the energy market.

−Market price At the energy market energy will be supplied at a price
per period principle. Note that the energy market can
be considered at the same level as a device: on
request the market can deliver information about price.

 Deliverable D6: Software architecture requirements

 50 / 57

Step 3: Identifying operations

The following operations can be identified in the above description of comfort
management:

−set user profile the user can define a required comfort profile and

permitted deviations over a period in time (typically
24 hours).

−get value from a number of in-house and shared devices
information on current climate must be gathered
which serves as input for the comfort control:

−control comfort given the current settings of a number of comfort
devices and the expected market energy prices and
the weather forecasts a scenario is determined to
deliver comfort within given profile bounds at
optimum (minimal) cost.

−set device on the basis of the output of the comfort control the
setting of each comfort influencing device must be
adapted.

−get prices expected market prices for energy over the decision
period (24 hours) must be retrieved.

−get forecast expected climate conditions over the decision period
(24 hours) must be retrieved.

Step 4: Deployment of tasks
Comfort management is a service, which is focussed on one house. Most of the
information needed, can be obtained from the house or its direct environment.
Optimisation by price requests pricing information from the market to be available.
The logical level for comfort control therefore is the access node to the home. A
weather 'station' can be set up at a base station to obtain climate information. The
connection to the outside world is used to obtain weather forecasts and market
price info. If prices are fixed by contract with a utility these prices might be made
available at the access node.

A detailed design is described in [6]. Characteristic in this design is the high level
of control needed at a low level in the infrastructure, the Local Access Node.
Therefore the access node requires larger processor capacity and memory.
Communication to the service provider is less essential. Most information is
gathered locally in the house or near the house. Pricing information and weather
forecasts have to be retrieved from a central level. In the comfort management
system example multiple autonomous agents achieve this.

 Deliverable D6: Software architecture requirements

 51 / 57

4.7 References

[3] James Rumbaugh, Grady Booch, Ivar Jacobson - Unified Modeling Language

Reference Manual. Addison-Wesley, 1998.
[4] Ivar Jacobson, Grady Booch, James Rumbaugh - The Objectory Software

Development Process. Addison-Wesley, 1998.
[5] Grady Booch, James Rumbaugh, Ivar Jacobson - Unified Modeling Language

User Guide. Addison-Wesley, 1998.
[6] Robert Orfali, Dan Harkey, Jeri Edwards - The Essential Distributed Objects

Survival Guide. John Wiley & Sons, 1996.
[7] Ron Ben-Natan - CORBA, a Guide to Common Object Request Broker

Architecture. McGraw-Hill, 1995.
[8] Boertjes, E., J.M. Akkermans, R. Gustavsson, R. Kamphuis. Agents to Achieve

Customer Satisfaction: The COMFY Comfort Management System.
Proceedings of the Practical Application of Intelligent Agents and Multi-Agents
Conferences (PAAM), April 10-12, 2000.

 Deliverable D6: Software architecture requirements

 52 / 57

5 Architectural implementation issues.

5.1 Partitioning of functionality
In the previous chapter a number of application types enabled by PLT were
modelled. Next step is deriving a partitioning scheme for the objects discussed
there. Classically, in the hierarchical model three partitions are to be discriminated:
• Peripheral equipment. Sensor, actuator.
• Communication. LAN, MAN, WAN.
• Data processing
When viewing in this way, the largest number of interfaces is generated in
communication. A customer communication interface has to interact with the
power line carrier, the local, metropolitan and wide area network, the utility side
telecommunications interface and the data processing packages through several
layers. In order to enable two-side communication of control signals, very complex
mechanisms have to be designed. Therefore delegation of control and distribution
tasks to suitable concentrator subsystems in the chain are necessary.

Apart from the large number of different interests of parties involved in realising
applications and the lack of standardisation to “open” hard- and software and the
cost-consequences thereof, these issues form the largest problem for realising
applications. Current developments in software and hardware technology lead to
an increasing processing power and bandwidth for small scale, powerful dedicated
systems. In this respect there is less a need for big bandwidth, but for smart
bandwidth. The last statement stresses the fact that, for most powerline
applications, efficient and reliable usage of limited bandwidth between powerful
processors is more important than a high bandwidth between “dumb” processors.
Important in this respect is the point at which data is converted into information
and control directives.

5.2 Required management and configuration facilities

5.2.1 Object persistence
In current software design methods nowadays, data (attributes) and procedures
and behavioural aspects are contained in objects. Depending on the functionality
of applications and for security reasons, the attributes of objects and the state
information have to be saved at the proper level. In case of outage of the
application or system, procedures have to be designed to restore the object’s state
to the one before the crash.
For a “simple application” as meter reading this already poses problems. A crash
can occur during read-out using the sensors, during transfer to the gateway or
during operations further on to the legacy, utility accounting system. How higher
hierarchically the metering “intelligence” is in the network, the more complicated is
the restoring algorithm. Therefore metering information objects should be
persistent at the lowest hierarchical level. From the software maintenance point of
view, metering applications should be as much as possible thin-client. Embedded
processors should have high MTBF-figures and should be able to store status

 Deliverable D6: Software architecture requirements

 53 / 57

information with high reliability. Metering read-out should be preferably realised
using “servlets” wrapped to legacy metering and billing applications and
databases.
In more complex control applications like multi-parameter optimising comfort
management, more complex software is implemented on larger processor
capacities. Memory requirements will be larger. Information contained in objects
can be downloaded at regular intervals from a larger computer system in the
network. Again the emphasis in reliability and computing power is on the RG.
Loosely coupled feedback (analysis of measured data and adaptation of control
parameters) on the performance of the algorithms from larger computer resources
higher in the network hierarchy will be a major benefit but not essential
prerequisite. Sustained operation in the absence of larger computing systems is
essential.
For the other application types like P2P, IP and EMA the emphasis for secured
object persistence clearly is on the server side. The control complexity as can be
derived from the UMLK-models is lower.

5.2.2 Replication mechanisms, serialisation and versioning
If object information is needed at other levels in the application hierarchy, data and
state information have to be transferred and replicated across the network. For
successful execution of remote procedure calls between objects residing at
different nodes of the network, a serialisation mechanism transfers all necessary
information to the correct nodes. A number of standards facilitate this mechanism.
Currently COM and CORBA are the mainstream standards for remote procedure
calls, but the needed resources are heavy and are geared to larger processor-
capacities than present in current small-scale apparatus. In SOAP and DOM, a
WWW based document object model, a connection to these standards is made
also incorporating XML. In Java, a mechanism for serialisation using the RMI
standard is also contained. This technology however, especially concerning real-
time Java, is in the development phase and has a lack of support of the leaders in
the field of real-time software development. Furthermore, firewalls pose large
difficulties for transparent Java-RMI.
From a software maintenance point of view, the home network and gateway
appliances will have a long usage cycle. Maintenance of hardware and software
versioning therefore is important for proper operation of applications. Current
software standards have a versioning mechanism to check if objects interact with
each other are generated with the same compiler products and support libraries.
This mechanism will be mandatory for DCMS applications.

5.2.3 Multi-agent architectures

Applications, in which a large number of information-sources have to be monitored
or inspected, benefit from multi-agent architectures and technology. The scope of
applications for agents therefore is geared to surveillance systems, scheduling of
events and meetings in residential areas and for calendar applications. Agents
have the advantage of an auto-replication mechanism. Furthermore, they are
autonomous in bargaining with other agents for a resource using market
algorithms [1]. In this way optimisation problems are easier to solve in a computer
network environment. Especially for large distributed systems the agent
abstraction has its benefits. The control behaviour of these systems is hardly
codeable in conventional ways because the large number of possible states of the

 Deliverable D6: Software architecture requirements

 54 / 57

system as a whole. The optimisation of the system operating with distributed
processors in a concerted way, e.g. for energy management, is hardly solvable by
central, analytical algorithms and procedures as well. Market and auction
algorithms implemented in a large number of autonomous processes in a
distributed processor network are the only way for successful implementation.

5.2.4 Control timing implementation and synchronisation
A large layered control-network has delicate timing. Frequent time synchronisation
and propagation mechanisms are necessary to guarantee secure parallel
operation. Again, the DCMS-type of applications is most important in this respect.
For the other types of applications the responsibility can be laid on the server side.

5.3 Conclusions
In view of the above architecture requirements the perspective of single residential
gateway apparatus covering the four application types discussed above is difficult
to imagine. Distributed control and management applications do stand too far
apart in architecture requirements. The prime combination potential in gateway
functionality combination lies in telephony and Internet application types especially
for packet-switched telephony and in telephony and multimedia applications, if the
DSL-bandwidth can be extended to support real-time video. However, the three
order of magnitude difference between telecommunication company and cable
communication fares remains a large barrier. Therefore, hybrid solutions, in which
several gateway apparatus are involved in combinations, are most likely.
Integration in the application then is on a higher level on the network application
software. This conclusion follows from the software architecture perspective,
where only reduction of the complexity of interfaces and control behaviour and
transparency counts. Many stakeholders being involved, a multi-gateway, multi-
service software architecture, from a business point of view, imposes a constraint
on the business modelling process.
The possibility of attributing a role to the transformer station hard- and software as
a residential area gateway is an important difference compared to other last-mile
access technologies. In case of control applications, if such a gateway could
replicate the functionality to a large number of small size, cheap DCMS-gateways
in dwellings a definite advantage can be imagined. To a lesser extent this also
holds for IP and telephony applications. However, the number of standards and
software components for residential area gateways is scarce.

The table below gives an indication of the importance of certain aspects of
application types on residential gateways discussed before:

 Deliverable D6: Software architecture requirements

 55 / 57

 DCMS Point-to-

point
Internet Multimedia (3rd

generation Set-
top box)

Preferred
messaging

Client/thin
server,
asynchrono
us

Peer-to-
peer,
synchronous

Thin
client/server,
asynchronous

Thin
client/server,
synchronous

Software
deployment,
maintenance

PROM,
Download
of
applications

PROM Download Once

Local
Processing
power

High Low Medium Low

Local Memory Low Low High Low
Central
processing
power

Low Medium High Medium

Control
complexity

Large Medium Medium Low

Autonomous
Intelligence

High Low Medium Low

Upstream
bandwidth

Low Moderate Moderate Low

Downstream
bandwidth

Low Moderate High Very High

Response time Low High Moderate High
Always-on
connection of
communication
channel

Low Low High Moderate

Table 2. Comparison of application type attributes.

DCMS need to be very reliable and should perform autonomously. Control is fine-
grained, exception handling is very delicate and processing power requirements
need to be laid out on handling complex transition state logic and real-time
handling of combinations of events. Most of the application logic resides on a
locally processing RG, whose bandwidth requirements are very limited.
Point-to-point communications are based on synchronous peer-to-peer
communication. Processing power requirements are limited; real-time software
with dedicated DSP’s (Digital Signal Processors) will take care of coding and
decoding.
Internet traffic uses its processing power mainly for dynamic graphical visualisation
and for bulk data transfer. Control is coarse-grained and exception handling not
complicated.
For broadband, digital multimedia applications third generation set-top boxes with
local intelligence have very limited, but very fast local processing power in FPGA’s
or ASIC’s.
In an architectural sense imagining an RG handling all four kinds of applications
cannot be foreseen. The diverse requirements for residential gateway technology

 Deliverable D6: Software architecture requirements

 56 / 57

will most likely lead parallel application driven implementation of several gateways.
As stated earlier, hybrid solutions, from the resemblance in requirements, are only
between Internet applications and DCMS-applications.

5.4 References:

[1] P. Novais, L. Brito, J. Neves. Agreement in Virtual Marketplaces with CBR

supported negotiation. Proceedings of the Fifth International Conference on
the Practical Application of Intelligent Agents and Multi-Agent Technology.
Manchester, 2000.

 Deliverable D6: Software architecture requirements

 57 / 57

6 Used abbreviations

ADSL Asymmetric Digital Subscriber Line
ASIC Application Specific Integrated Circuit
ASP Application Service Provider
ASP Active Server Page
COM Common Object Model
CORBA Common Object Request Broker Architecture
DA Distribution Automation
DCMS Distributed Control and Measurement system
DCS Distributed Control System
DOM Document Object Model
DSM Demand Side Management
EHS European Home Systems
IEC International Electrotechnical commission
IP Internet Protocol
LON Local Operations Network
OSGi Open Services Gateway initiative
PALAS Powerline as an Alternative Local AccesS
PLC/T Power Line Communication/Transmission
RG Residential Gateway
RMI Remote Method Invocation
SCP Simple Control Protocol
SOHO Small Offices Home Offices
UCA Utility Communication Architecture
UPNP Universal plug-and-play
USB Universal Serial Bus
XML eXtended Markup Language

